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Abstract: Central to any medical domain is the challenging patient to medical professional assign-
ment task, aimed at getting the right patient to the right medical professional at the right time.
This task is highly complex and involves partially conflicting objectives such as minimizing patient
wait-time while providing maximal level of care. To tackle this challenge, medical institutions ap-
ply common scheduling heuristics to guide their decisions. These generic heuristics often do not
align with the expectations of each specific medical institution. In this article, we propose a novel
learning-based online optimization approach we term Learning-Based Assignment (LBA), which
provides decision makers with a tailored, data-centered decision support algorithm that facilitates
dynamic, institution-specific multi-variate decisions, without altering existing medical workflows.
We adapt our generic approach to two medical settings: (1) the assignment of patients to caregivers
in an emergency department; and (2) the assignment of medical scans to radiologists. In an extensive
empirical evaluation, using real-world data and medical experts’ input from two distinctive med-
ical domains, we show that our proposed approach provides a dynamic, robust and configurable
data-driven solution which can significantly improve upon existing medical practices.

Keywords: human-computer interaction; healthcare; smart environments

1. Introduction

The patients to medical professionals ratio has decreased over the years across the
globe [1]. As a result, medical professionals are faced with an ever increasing dynamic flow
of patients who present a wide variety of conditions, all of which seek high quality and
fast medical attention. Due to the variability in patients’ conditions, as well as the limited
availability of medical professionals and their own variability (i.e., domain of expertise and
experience), an efficient patient to medical professionals assignment process is needed [2,3].

The patient to medical professional assignment problem is directed at getting the right
patient to the right medical professional at the right time, given the medical institute’s
objective and constraints. Specifically, given a patient’s arrival and the available medical
staff, a decision has to be made as to when the patient should receive treatment and
by which medical professional. With recent technological advances in healthcare and
massive AI and sensor integration in the medical field we are seeing a growing transition
to healthcare being provided by automated systems. For example, consider a patient
entering an emergency department. Advanced sensors enable automated sensing of the
patient’s health metrics and provide secure and privacy preserving access to her medical
records. Given this automated assessment, the task of prioritizing the patient and assigning
a suitable medical professional has to be properly addressed. In this work, we address
this challenge with a novel learning-based approach. As of today, most patient to medical
professional assignment processes are performed by people (e.g., by triage nurses in the
emergency department) using conventional heuristics for online scheduling which may
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perform sub-optimally. These heuristics commonly focus on medically-established upper
bounds (or deadlines) for the patient’s waiting time for treatment [4]. Specifically, they
are aimed at minimizing these violations as exceeding these upper bounds may result in
increased risk for adverse medical consequences.

Minimizing deadline violations need not necessarily best align with the medical
institution’s (complex) objective. For example, in an Emergency Department (ED) setting,
the ED is faced with multiple partially-conflicting objectives such as minimizing patients’
risk (e.g., allocating the most suitable physician) on the one hand and reducing wait time
(e.g., assigning each patient to the first available physician) on the other. It is self-evident
that considering only a subset of these objectives, as ED heuristics often do, will likely
fall short of achieving the desired medical institution’s objective [5,6]. As such, decision
makers can benefit from the use of an intelligent decision support system which is tailored
for the entire set of objectives and constraints [7].

On top of the aforementioned complexities, additional two key requirement of the
medical domain is flexibility and autonomy. Flexibility is needed to support different
patient arrival flows and available medical staff (due to changing circumstances such as
national holidays, global pandemic, etc.) and the varying nature of the institute’s objective
(due to new regulations and managerial focuses). Thus, the desired approach has to exhibit
both robustness to uncertainty and sufficient configurability to properly support different
medical institutions over time. In addition, in the medical domain, decision makers have
to maintain a certain degree of autonomy. For example, in most EDs, physicians may
be asked to treat a certain patient at a given time. In other settings, a higher degree of
autonomy may be required by the physicians such that each of them is provided with
a list of possible patients. The physician is then allowed to prioritize the list at her own
discretion. This list is often referred to as the medical professional’s “exposure list”. A
representative example is the exposure of scans to radiologists for medical analysis. In both
cases, a decision maker is allowed to ignore the recommendation of a decision support
system, and, thus, the desired approach has to dynamically adapt and continue to provide
high quality recommendations.

In this article, we propose a general-purpose learning-based approach we term
LEARNING-BASED ASSIGNMENT (LBA), which can address both the aforementioned
challenges and can be applied to the two medical assignment scenarios mentioned above.
Our approach combines standard offline optimization techniques with machine learning
to provide a dynamic, robust and configurable data-driven solution. Specifically, our
approach starts with a specification of a medical assignment process, a set of metrics and
a complex objective. These are translated into a formal optimization problem along with
domain specific constraints. The optimization problem is then instantiated into small-scale
scenarios, based on real-world data, which are solved using offline optimization techniques.
The set of solutions is used to train a machine learning model, which is in turn used to
supply a recommended assignment to the medical decision maker.

In an extensive empirical evaluation, using real-world data and medical experts’ input
in two medical scenarios, we show that our proposed LBA approach can significantly
improve the patient to medical professional assignment over established medical practices,
which can translate into better health care for the greater good.

2. Related Work

To better understand the unique characteristics of patient–medical professional as-
signment problem, we next situate the problem within the existing literature and point
to the central limitations of existing approaches. The assignment of patients to medical
professionals can be seen as a special type of Job Shop Scheduling (JSS), which is a fun-
damental problem in computer science and operations research [8]. The scheduling of
jobs to machines in JSS is analogous to the allocation of patients to medical professionals
in a medical setting. JSS is also prevalent in multi-agent systems, such as multi-robot
task-allocation [9,10], and in other batch allocation of tasks, such as in crowd-sourcing [11].
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Similar to the medical settings we investigate in this article, JSS problems often face the chal-
lenge of properly addressing complex and partially conflicting objectives (i.e., translating a
given objective into a suitable heuristic) as well as accounting for the varying capabilities of
the machines (as in the case of unrelated parallel scheduling [8]). An additional challenge is
the question of partial completion of tasks. For example, Zheng and Shroff [12] addressed
the scheduling of computer jobs to a cloud cluster in a setting where tasks arrive online
but give some partial value for partial execution. Naturally, in most medical settings,
patients must be fully treated and therefore we do not allow for partial treatment. One
exception to the above is the preemption case, where a medical professional is called
to treat a higher priority patient in mid-treatment, which only occurs in extreme cases.
The notion of preemption is not unique to the medical setting and was also investigated
by Doucette et al. [13], when addressing the assignment of tasks to agents in an online
fashion. Neither of the above studies addresses the possible differences in valuation and
the completion rate of the agents/machines in contrast to how medical professionals vary
(i.e., seniority and specialty). In addition, the medical domain introduces domain-specific
challenges. As mentioned above, medical professionals require a certain degree of “free-
dom” in ignoring recommendations and/or prioritizing their tasks (unlike machines in
the conventional JSS setting). To the best of our knowledge, this challenge has yet to be
addressed in the literature.

From a machine learning perspective, task scheduling using classification was recently
investigated (e.g., [14,15]). Most work in this realm focuses on solving offline problems
with dependencies (e.g., temporal dependencies) and deadlines, while we focus on solving
online problems of independent tasks (patients) where there is no strict deadline but rather
a desired upper bound on the patient’s waiting time. More relevant to this work is the
method in [16] which takes a Learning from Demonstration (LfD) approach—that is,
learning human-quality heuristics based on demonstrations—to a scheduling problem
without varying values for tasks. Similar to our proposed approach, the authors used a
pairwise ranking function; however, while the authors tried to mimic a human-quality
policy, we follow optimal solutions, thereby overcoming the inherent suboptimality of
existing human-generated medical practices.

From the medical perspective, few works have addressed patient assignment concerns.
Notably, Peretz et al. [17] focused on the nuclear medicine domain and took a two-stage
stochastic integer programming approach to assign patients that require multi-step tests,
e.g., a patient arrives with three tests to be performed that have to be performed sequentially,
with the restriction that any individual task cannot be paused once it has begun. In the
proposed model, once a patient’s tasks are assigned (possibly, in the future), they cannot be
changed or interrupted, a constraint we do not have in most medical settings. There are
also various techniques for allocating medical staff to shifts under different constraints [2].
Similarly, optimization methods have been developed and applied for emergency response
systems (e.g., [18]). Several works have focused on minimizing the overall patient time
in the ED. For example, Harzi et al. [19] used a mixed integer linear program approach
to derive optimal scheduling of patients for a given scenario (specified by the patient’s
arrival times and the number of physicians). Unfortunately, this approach is limited by
the number of patients (the authors were unable to evaluate it with 25 patients or more).
Moreover, this approach does not generalize to a dynamic online setting where patient
arrivals are unknown in advance. Similarly, Luscombe and Kozan [20] modeled the ED
environment as parallel machines flexible job shop scheduling problem which is solved
using a tabu search approach. To the best of our knowledge, this line of research has not
addressed, to date, the challenges outlined above in the online assignment of patients to
medical professionals to date. Specifically, it is common in these works to assume that no
preemptions are allowed and that all physicians are “identical” such that the specialty and
experience of a physician is not considered when assigning a patient to a physician.

Our medical setting is centered around the assignment of patients to medical profes-
sionals. Assignment algorithms are generally divided into two categories: (1) point-wise,
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in which each possible option is given a score and the highest ranking option is selected;
and (2) comparison-based, in which each pair (or list) of possible options are compared to
each other providing a partial order among options. Prior work has shown that pairwise
approaches work better in practice than point-wise approaches resulting in popular “Learn-
ing to Rank” algorithms such as RankNet, LambdaRank and LambdaMART [21] which are
pairwise approaches. Drawing inspiration from the above algorithms, in this article, we
propose the use of supervised machine-learning algorithms (e.g., deep neural networks) to
train a pair-wise ranking function. Specifically, we develop a learning-based method to
train a ranking function which is at the core of our approach. This method is inspired by
the learning-to-ranking algorithm used in information retrieval [22]. In the information
retrieval setting, the success of the trained heuristic is determined by point-wise evaluation.
Namely, each prediction is scored independently from other predictions. However, in most
medical settings, the score is determined by a series of sequential decisions and not by a
point-wise scoring function.

Our approach also allows medical professionals to have a certain degree of autonomy
as required. For example, the decision of which patients should appear in one’s exposure
list may be viewed as choosing a list of recommendations to be presented. This problem is
often addressed by recommender systems [23]. At the core of the classic recommendation
setting, a recommender predicts the rating or preference that a user has over a list of
items (e.g., what movies or TV shows will a user find interesting [24]). However, this
classic setting has also been extended such that the recommender’s task is subject to
a set of constraints and an optimization objective, similar to our setting. For example,
Shani et al. [25] casted the recommendation problem as a Markov Decision Process (MDP)
such that the long-term effects of each recommendation could be considered and the
expected returns could be optimized. Similar optimization approaches have been proposed
for movie recommendations [26,27], nutrition [28] and online dating [29,30], to name a few.
To the best of our knowledge, none of the above works have addressed the domain specific
challenges associated with medical assignments such as the time-sensitive nature of the
process. From a technical perspective, common recommender systems do not seem to be
applicable to our setting, as they consider each recommendation separately and locally.
Simply put, they assume an interaction of a “single user” with a fixed set of items, whereas
in our case a group of medical professionals jointly work on a shared dynamically changing
set of tasks.

Decision support tools have been developed in the literature to improve the efficiency
of healthcare delivery services such as improving scheduling of elective patients [31], nurse
routing for home dialysis [32] and other home healthcare logistics [33], to name a few. Our
work complements these efforts by addressing the unique aspects of online, near real-time,
assignment of patients to medical professionals.

3. The LBA Approach

To tackle the patient to medical professional assignment challenge outlined above, we
propose a novel machine learning-based approach we term as LEARNING-BASED ASSIGN-
MENT (LBA). LBA is aimed at approximating the idealized optimal offline assignment
(i.e., an omniscient scheduler), which is informed of the patients’ arrival distribution, their
characteristics and the available staff in advance. Our setting is online and event-driven,
namely, when a new medical task arrives (i.e., a new patient arrives at the ED or when
a new scan is taken) or is completed, a decision has to be made. Our proposed decision
support algorithm tackles this challenging setting by suggesting the next action to be taken
based on the global optimization objective(s).

At the core of our approach, we use a learning-based method to train a pairwise
ranking function inspired by the learning-to-rank algorithm which is widely used in the
information retrieval domain [22]. In our setting, namely assigning patients to medical
professionals, we seek to learn the relative ranking over the available assignments. This
ranking function is, in turn, used for comparing all possible patient–medical professional



Sensors 2021, 21, 3021 5 of 21

pairings and makes a selection based on a standard voting rule (e.g., majority vote). To
that end, LBA first creates a large set of small-scale assignment scenarios based on relevant
patients’ arrival models (which may be learned from past data, e.g., [34]) and available
staff. These scenarios are (near) optimally solved using appropriate offline optimization
techniques such as mathematical program solvers (e.g., Gurobi [35]), Monte-Carlo-Tree-
Search (MCTS) methods [36] and others, given the institute’s objective. The optimized
solution set is then translated into a set of training examples. Namely, each decision taken
in the optimized solution is paired with all the other available decisions that were not
taken, to create training instances. These instances are used to train the ranking function
which is then used in the online setting by selecting the “best” decision after comparing all
possible pairs of potential decisions (see Algorithm 1). Note, however, that our approach
can be readily adjusted to provide a prioritized list of the available decisions (or, for that
matter, the top-k decisions) rather than just the highest ranking decision. For simplicity and
evaluation purposes, we focus on the latter case.

Algorithm 1 The Learning-Based Assignment Process.

1: Create a set of patient to medical professional assignment scenarios.
2: Translate each scenario into an appropriate offline optimization problem.
3: Solve (either optimally or sub-optimally) the offline optimization problems.
4: Translate each optimized offline decision into a training instance.
5: Train a ranking function.
6: Use the resulting ranking function as an online policy.

Next, we apply and evaluate our approach in two medical domains: EDs and medical
scan readings.

4. Implementation

We implement our approach while focusing on two medical settings: (1) the patient–
physician matching in EDs; and (2) the exposure of scans to radiologists.

For each domain, we first discuss its distinctive characteristics pertaining to our
approach. Then, we formalize the key factors associated with the domain. Next, we
discuss the available data used in our implementation for generating offline scenarios.
Then, we formulate the relevant offline optimization problems and discuss the appropriate
solution procedure. Then, we present the training of our machine learning algorithm
and its architecture, which, in turn, translates into an online policy. Last, we evaluate the
learned policy using real-world data and discuss the results.

4.1. Patient–Physician Matching in EDs

Nearly half of all US hospital-associated medical care is delivered by EDs, also known
as emergency rooms, making EDs a major source of medical care, especially for vulnerable
populations [37,38]. EDs are faced with a dynamic flow of patients who present a wide
variety of conditions, ranging from severe multiple percussive injuries and drug overdoses
to common colds and cuts and scrapes, all of which seek fast and quality medical attention.
Due to the variability in patients’ conditions, as well as the limited availability of medical
resources and their own variability (i.e., attending physicians, interns, etc.), an efficient
patient–physician matching is needed, a process which is often referred to as triage [39].

While different EDs deploy slightly different modes of operation, a basic work-flow is
common to most modern EDs [40,41], as depicted in Figure 1. In words, when a patient
arrives at the ED, her first stop would be the triage station, where she would receive
a severity rank. Based on a assignment policy, which is in the focus of this study, the
patient would then continue to a (first) treatment/examination by a medical professional.
If the condition is appropriately diagnosed and/or treated, the patient may be released or
admitted to a hospital ward. Otherwise, additional lab tests (e.g., CT, bloodwork) would
be needed which in turn would require a re-evaluation of the patient’s severity rank and
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a second treatment/examination, possibly by a different physician. According to ED
professionals, it is extremely rare for a patient to have more than two cycles of treatment
before she is discharged or admitted. Our trained algorithm is intended to assist the triage
nurse by advising on the best projected assignment.

Figure 1. The common ED work-flow.

The patient–physician matching is directed at getting the right patient to the right
physician at the right time, given the ED’s constraints. Specifically, given a preliminary
evaluation of the patient upon arrival (commonly done by a triage nurse) and the available
medical staff, a decision has to be made as to when the patient should receive treatment
and by which physician. Currently, the patient–physician assignment process focuses almost
entirely on assigning each patient a severity level using triage scales (e.g., between 1 and
5, 1 being the highest [42]), which in turn translates into an upper bound on the desired
patient’s waiting time, leaving the decision as to when and which medical professional
should provide the treatment entirely in the hands of the triage nurse(s). Unfortunately,
due to the time-critical environment, the multiple partially-conflicting objectives of the
ED (as discussed next) and multiple interruptions, decisions are often inadequately made
and are mainly based on conventional scheduling heuristics and experience which do not
necessarily fully align with optimizing the ED’s objectives (e.g., [4–6]). Specifically, while
EDs have been computationally investigated for over 70 years [43], mainly focusing on
modeling the patient arrival flow and required staffing levels, to the best of our knowledge,
the patient–physician assignment problem has yet to be addressed by computational means.
To address this shortcoming, we make use of our approach (Section 3) and adapt it to the
ED domain.

Our approach provides the ED with an effective and efficient policy targeted at
optimizing the hospital-specific objectives given the hospital’s available resources and
expected patient flow.

To ensure the validity of the application of our approach to the ED domain from a
medical perspective, we recruited four medical professionals (who did not co-author this
article), namely a triage nurse, a physician’s assistant, an attending physician and an ED
director, from three large hospitals in Israel. We refer to these medical professionals as the
expert panel in this study.

4.1.1. Creating Patient–Physician Assignment Scenarios

Drawing on extensive modeling research based on data collected in one of the largest
hospitals in Israel, Rambam hospital in Haifa [34], we are able to generate scenarios matching
the real world. Specifically, the patient arrival process and physician’s and lab tests’
required time, among others, are modeled.

Rambam hospital works in a three-shift workday. For this evaluation, we focus on
perhaps the most challenging shift—the night shift. The night shift takes place from 23:00 to
7:00 during which only 2–4 physician, of various seniority and specialties, work the ED,
making the assignment extremely complex.

4.1.2. The Optimization Problem

We start by modeling the two main sets of actors in the ED, patients and physicians
and their interaction. Our modeling is based on existing literature and common clinical
practices as prescribed by the expert panel.
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Patients. A patient pi ∈ P is represented as a pair 〈Severity, Injury〉 where Severity
is defined using a common triage scale (such as the popular Emergency Severity Index
(ESI) [5]) (Using the ESI, each patient is assigned a number between 1 and 5 representing
the acuity of her condition (with 1 being the most acute).) and Injury, which defines the
type of injury or condition based on the patients’ symptoms (e.g., Orthopedic, Internal,
etc.). According to clinical guidelines, pi is associated with the maximal time she is
permitted to wait for the initial physician’s treatment, denoted t1

pi
and, if needed, the

second physician’s treatment t2
pi

. Patients may arrive at time t to the ED based on an
estimated distribution Dpi (t), commonly assumed to follow an estimated distribution
learned from past data [34,44]. We assume that, upon arrival to the ED, pi’s characteristics
are correctly identified by the triage nurse. After leaving the triage station (or when pi’s
test results arrive, see Figure 1), she is scheduled to meet one of the physicians cj.

Physicians. A physician cj ∈ C is represented as a pair 〈Seniority, Specialty〉: Seniority
is defined based on the physician’s qualifications over a discrete set (In Israel, as in most
countries), c’s Seniority is classified to one the following (from lowest to highest): physi-
cian’s assistant, intern, resident and attending physician.) and Specialty indicates if the
physician has “special training” in a specific injury type defined over the same set of injury
types which characterize the patients (NONE otherwise). As a result, different physicians
may have different required treatment times and varying levels of care quality. The set of
available physicians, as well as their characteristics, is assumed to be known in advance
and does not change during a shift.

Objective. The principal purpose of the ED is to ensure that patients receive the level
and quality of care appropriate to their clinical needs and that the ED resources are most
usefully applied to this end [45]. Unfortunately, explicitly quantifying the above purpose
is highly complex [46], which often leads hospitals and governmental agencies to define
multiple, often partially conflicting, objectives [47]. These objectives primarily focus on
minimizing the following measures: (1) risk of adverse consequences to patients [48] (e.g.,
misdiagnosis, inappropriate medication); (2) ED over-crowdedness [49]; (3) interruptions to
physicians [50]; (4) patients’ wait times [51]; and (5) patients’ length of stay in the ED [52].

With the help of the expert panel (who are familiar with Rambam hospital’s practices
and Israel’s guidelines), we instantiate the ED’s objective and constants of our model which
are not directly observable from data. Namely, we formulate the primary ED objectives
as follows:

(1) Minimizing risk of adverse consequences. Each examination (e ∈ {1, 2}) performed
by cj on pi has some risk of an adverse consequence. For example, a physician’s assistant
with no specific specialty may be very well equipped to perform a first examination of
minor orthopedic injuries with only a minimal risk of an adverse consequence, while
severe head injuries should be examined by a qualified physician. We use AC(pi, cj, e) as
an indicator of whether pi was examined by cj in her eth examination. riski,j,e denotes the
risk of adverse consequences associated with such an examination.

(2) Minimizing patients’ waiting time. Each patient pi, has to wait for her first (and
second) examination for WT(pi, e) minutes. Given pi’s t1

pi
and t2

pi
(as defined by the triage

scale), the ED seeks to minimize the wait time and avoid exceeding the wait time limits.
The penalty for exceeding the limits is provided by exci,e,δt where δt is the excess wait time.

(3) Minimizing patients’ length of stay. Each patient pi spends LOS(pi) minutes from
the time she arrives at the ED to the time she is discharged or admitted to a hospital ward.
This LOS(pi) includes the time pi waits for examinations, the treatment time needed by
the physicians, denoted CE(cj) · TT(pi, e) and (if needed) lab test time LT(pi) between the
two examinations. TT(pi, e) denotes the nominal treatment time and CE(cj) ≥ 1 denotes
the physician’s time efficiency factor, capturing the relative “examination speed” which
varies between physicians.

(4) Minimizing over-crowdedness. At any point in time, one can measure the number
of patients currently waiting and being treated in the ED, denoted κ(t), where t indicates
continuous time.
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(5) Minimizing interruption to physicians. Unfortunately, in some (extreme) cases, a
physician may be asked to stop the treatment of one patient in order to treat another. This
preemption may be very costly. The number of preemptions during pi’s eth examination is
denoted as PC(pi, e). The penalty for each interruption is given by prei,e.

The ED must choose, for each patient pi, which physician cj will provide the examina-
tion/treatment e and at what time t. Let yi

j[e, t] be indicator decision variables denoting
that patient pi is assigned to physicians cj for her eth examination at time t. We assume
that the ED is evaluated based on some metric, defined by stakeholders and governmental
agencies, over the above five objectives, e.g., using a linear objective which summarizes the
weighted objectives over all patients, examinations and time as proposed in Equation (1).
Note, however, that the objective need not be linear, and, in the interest of generality, we
do not assume it to be in the following sections.

Minimize
yi

j(e,t)
∑
pi

∑
e∈{1,2}

∑
cj

(
∫

t
yi

j[e, t]

(α1 AC(pi, cj, e)riski,j,e + α5PC(pi, e)prei,e)dt+

α2WT(pi, e)exci,e,δt + α3LOS(pi)) + α4

∫
t
κ(t)dt) (1)

Table 1 summarizes the paper’s notations.
When the patients’ arrival times and characteristics are known in advance, optimal

patient–physician assignment can be derived over a discrete finite horizon t = 0, . . . , T
using the following Mathematical Problem (MP):

Minimize
yi

j [e,t]
ED Objective (i.e., Equation (1)) (2)

s.t ∑
i

∑
e

yi
j[e, t] ≤ 1 ∀j, t (3)

∑
j

yi
j[e, t] ≤ 1 ∀i, e, t (4)

ρi,j,e,t = yi
j[e, t](¬yi

j[e, t− 1]) ∀i, j, e, t ≥ 1 (5)

χi,e,t = t ·∑
j

ρi,j,e,t ∀i, e, t ≥ 1 (6)

sti,e = min
t
{χi,e,t} ∀i, e (7)

φi,e,t = t ∑
j
(¬yi

j[e, t])yi
j[e, t− 1] ∀i, e, t ≥ 1 (8)

eti,e = max
t
{φi,e,t} ∀i, e (9)

sti,e < eti,e , sti,2 ≥ eti,1 ∀i, e (10)

arrivali,2 = eti,1 + LT(pi) ∀i (11)

sti,e ≥ arrivali,e ∀i, e (12)

LOS(pi) = eti,2 − arrivali,1 ∀i (13)

WT(pi, e) = sti,e − arrivali,e ∀i, e (14)

∑
j

∑
t

yi
j[e, t]/CE[j] = TT[pi, e] ∀i, e (15)

PC(pi, e) = ∑
t

∑
i

ρi,j,e,t − 1 ∀i, e (16)

AC(i, j, e) = I(∑
t

ρi,j,e,t > 0) ∀i, j, e (17)
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The MP consists of an ED-specific objective function (e.g., Equation (1)) and the fol-
lowing constraints: Equations (3) and (4) enforce that at most one patient is treated at a
time by each physician and, similarly, at most one physician can treat a patient at a given
time. Equations (5)–(7) extract the treatment start time and Equations (8) and (9) extract
the treatment end time. Equations (10) and (12) enforce a valid treatment duration, while
Equation (11) extracts the time in which a patient becomes available for her second treat-
ment. Note that arrivali,1 is assumed to be given in the offline setting. Equations (13) and (14)
extract each patient’s LOS and WT, respectively. Next, Equation (15) makes sure that
the time physicians are assigned to a patient is appropriate and Equation (16) extracts
the preemptions that took place. For simplicity, the above MP assumes each patient is
treated twice.

Table 1. Summary of key notations.

Notation Meaning

t Time.
pi ∈ P Patient.
cj ∈ C Physician.

AC(pi, cj, e) Indicator whether cj is assigned to
pi’s eth examination.

WT(pi, e) pi’s waiting time for her eth examination.
TT(pi, e) Time (nominal) required for the

eth examination of patient pi.
LT(pi) Time required for lab tests of pi.
CE(cj) A type-c physician time efficiency factor.

κ(t) #patients in the ED at time t.
PC(pi, e) #interruptions to pi’s eth examination.

Note that the patient–physician assignment problem is akin to the well studied job
shop scheduling problem of unrelated machines with preemption, with the analogy of
physicians to machines and patients to incoming jobs, as discussed below. This problem is
known to be NP-hard [53].

4.1.3. Solving the Offline Optimization Problems

To solve the offline optimization instances, we use a Mixed Integer Linear Program
(MILP) available at https://goo.gl/rXaBRh (accessed on 25 April 2021).

4.1.4. Training Instances

Using the set of optimized solutions generated offline, we identify the times at which
a new patient arrives or when treatment of a patient is completed. For each such case, we
create all pairs consisting of the selected assignments according to the optimized solution
(〈p?i , c?j 〉 or 〈p?i , WaitRoom〉) coupled with any other assignment option which was not
selected (i.e., 〈p?i , cj〉 or 〈pi, c?j 〉 and WaitRoom options). For simplicity, from this point
onwards, we consider the assignment to the WaitRoom as a dummy physician which can
support an infinite number of patients but does not provide any treatment. The resulting
pairs are used as training data for a supervised ranking machine learning algorithm as we
discuss next. In other words, we use the set of optimized solutions to generalize and mimic
the optimal decisions made in the offline settings.

With the help of the expert panel, we define a feature vector that combines a descrip-
tion of the patient and the physician’s current state, as shown in Table 2.

https://goo.gl/rXaBRh
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Table 2. Combined patient–physician feature vector.

Feature Vector

Patient

severity (Following ESI) 1/5, 2/5, ..., 5/5
injury one-hot vector

remaining treatment time in minutes
wait time in minutes

remaining time in minutes

Physician

seniority 1/4, 2/4, ..., 4/4
specialization one-hot vector

status 0-idle; severity of patient
idle time in minutes

4.1.5. Ranking Function

Inspired by the neural network ranking approach in information retrieval [22], we
develop a new Deep Neural Network (DNN) architecture targeted at learning to rank
among assignments based on the created dataset of pairs discussed above.

Specifically, our DNN is composed of two identical sub-networks, with shared weights.
The network architecture is shown in Figure 2.

The anti-symmetric nature of the network is built by sharing weights, as can be
demonstrated for the connection between the input and the first hidden layer:

−→w 1
i,1 = w(

−→
X → −−→H1,1) = w(

−→
Y → −−→H1,2)

−→w 2
i,1 = w(

−→
X → −−→H1,2) = w(

−→
Y → −−→H1,1)

The bias term of both parts of the first hidden layer is also shared. Thus, the two
output vectors of the first hidden layer are:

−−→
H1,1 = tanh(~w 1

i,1 ·
−→
X + ~w 2

i,1 ·
−→
Y +

−→
b1 )

−−→
H1,2 = tanh(~w 1

i,1 ·
−→
Y + ~w 2

i,1 ·
−→
X +

−→
b1 )

The rest of the layers share weights and connections in a similar fashion with their
appropriate activation functions. Complete technical details are available in our code.

~X

~Y

~H1,1

~H1,2

~H2,1

~H2,2

~H3,1

~H3,2

~H4,1

~H4,2

O1

O2

Input
layer

hid-1
layer

hid-2
layer

hid-3
layer

hid-4
layer

Output
layer

Figure 2. DNN comparator.

This architecture has the following properties:

1. Reflexivity: For identical input vectors, the network produces identical outputs.
2. Anti-symmetry: For input vectors x, y, if x � y (reads “x is preferred over y according

to the DNN”), then, for input vectors y, x, we get y ≺ x and vice versa.

These properties make the network well suited to learn pairwise ranking functions.
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4.1.6. Online Policy

The trained DNN is used in the online phase of the algorithm as follows: At each
assignment event, i.e. patient arrival, or the completion of treatment, all possible as-
signments are compared to each other. Each comparison is worth one point to the higher
ranking assignment. Using a majority vote with random tie-breaking, the patient–physician
assignment is selected and presented to the user (i.e., the triage nurse).

4.1.7. Experimental Results

To evaluate our approach, we use real-world data and compare our LBA approach
with the conventional online heuristic deployed in EDs. This heuristic is often known as
First-Come-First-Served-with-Urgencies (FCFSwU) which, according to our expert panel,
is the backbone of most ED assignment decisions, including those at Rambam hospital.
FCFSwU works as follows: patients of severity Levels 3–5 are treated as a single “non-
urgent” type and are admitted in a first-come-first-served fashion to a physician who
specializes in the relevant injury type or to a physician with no specialty. Specifically, a
patient would not be assigned to a specialist who specialized in a different injury type.
Patients of severity Level 1 or 2 are treated as a single “urgent” type and, upon arrival,
the most senior specialized physician who is not already treating another urgent patient is
called (or interrupted) in order to provide the needed treatment.

We examined two scenarios: normal patient flow and heavy patient flow. The normal
patient flow is provided in the literature [34], whereas the heavy patient flow is derived
by multiplying the distribution parameters, resulting in twice the number of patients on
expectancy. We trained two LBA DNNs, one for the normal patient flow case, denoted
LBAN , and one for the heavy patient flow case, denoted LBAH .

We randomly generated 500 scenarios for each flow type, which in turn were optimally
solved using the Gurobi solver [35]. The results are translated into two training sets for
LBAN and LBAH . We evaluated both LBAN and LBAH versus the FCFSwU heuristic
on a series of 100 simulations of eight-hour shifts sampled according to the parameters
discussed earlier. Both approaches were evaluated using the expert panel objective function
available in our code.

Interestingly, for all 100 sampled instances, the LBA approach outperforms the FCF-
SwU heuristic. The difference is statistically significant, for both the normal and heavy
patient flow types, using a paired samples t-test, p < 0.05.

We further evaluated the results based on the five major ED objectives. We encounter
the following results:

1. Risk of Adverse Consequences: The average risk of adverse consequences was re-
duced by 10% (normal flow) and 15% (heavy flow) compared to FCFSwU.

2. Wait times: The average wait time was slightly reduced by an average of 20 s per
patient, across both patient flow conditions, compared to FCFSwU.

3. Length of stay: The average length of stay was reduced by 5% (normal flow) and 11%
(heavy flow) compared to FCFSwU.

4. Crowdedness: There were no significant differences.
5. Interruptions: The most prominent difference was measured in the number and cost

of preemptions. Specifically, a treatment is approximately 10 times more likely to be
interrupted using the FCFSwU compared to LBA. By weighting the interruptions by
their associated penalties, we see a penalty that is 20 times higher per shift.

Table 3 summarizes the results.
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Table 3. Marginal improvement of the LBA approach compared to FCFSwU.

Criteria Normal Load Heavy Load

Risk 10% 15%
Wait times marginal marginal
Length of stay 5% 11%
Crowdedness - -
Interruptions 95% 90%

The results further show that there is no apparent trade-off between the LBA approach and
the FCFSwU heuristic. Specifically, based on the results, the use of LBA improved four out
of the five performance metrics while having no impact on the fifth. Namely, our approach
provides a Pareto improvement over the existing practices.

All code and data used for evaluating our approach in this domain are available at
https://goo.gl/rXaBRh (accessed on 25 April 2021).

4.2. Radiology
4.2.1. Medical Imaging

Medical imaging is a key diagnostic tool for many diseases and plays an important
role in monitoring treatment and predicting outcomes [54]. Medical images, such as MRI,
CT, ultra-sound, etc., are transferred digitally to a shared storage which is accessible for the
radiologists (also known as readers). The readers, in turn, select the images (also known as
“studies”) they would like to work on (also known as “reading”).

From a medical perspective, each study is associated with a soft-deadline for complet-
ing the reading of the study. Violation of the deadline increases the patient’s risk of medical
complications and might prolong her suffering. These adverse consequences are greatly
exacerbated as the tardiness is increased. Thus, medical institutions apply a study-to-reader
exposure policy aimed at minimizing overly tardy study readings. This exposure policy
controls, for each study, the subset of readers who will have access to it. This exposure may
vary over time as new studies arrive while the tardiness of others increases. The rationale
of this policy is to have the ability to expose urgent studies (or a given study which has
become urgent) to a wider group of readers.

Naïve exposure polices, such as exposing all studies to every reader (maximum
freedom for readers) or exposing a single study to each reader (no freedom), are not
practical due to information overload on one hand and lack of autonomy on the other hand
(which is not not acceptable by today’s medical imaging standards). Deriving an efficient
study-to-reader exposure policy is extremely difficult due to two main factors:

1. The inherent uncertainty in the arrival times of new studies.
2. The local nature of the readers’ decisions may not align with the global objective.

To address these difficulties, we make use of our approach (Section 3) and adapt it to
the medical imaging domain. Note, that unlike the ED domain, radiologists expect to have
a greater degree of freedom in prioritizing their work.

To ensure the validity of the application of our approach to the medical imaging
domain from a medical perspective, we recruited a domain expert (who do not co-author
this study). The expert has been working with several large medical institutions in Israel
and abroad.

4.2.2. Creating Study-Reader Assignment Scenarios

For evaluating our approach, we used extensive data collected over a three year
time span from a major medical institution in Israel (to remain anonymous). The medical
institution employs more than 40 readers handling thousands of studies a year from several
physical sites. The institution deploys a naïve exposure policy, exposing all studies to all
readers, and has thus requested our help.

https://goo.gl/rXaBRh
https://goo.gl/rXaBRh
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4.2.3. The Optimization Problem

In our setting, there are two main sets of actors: studies and readers. Our model
is based on common clinical practices as prescribed by a domain expert (who did not
co-author this paper).

Studies. A study si ∈ S is represented as a tuple 〈M, B, D〉 where M (Modality) is
defined over a finite set consisting of the available imaging devices (e.g., MRI, CT, etc.) and
B is taken from the set of body parts. D (Deadline) represents the maximal desired time in
which the reading of the study should be completed. For each study si = 〈M, B, D〉, the
nominal time for a reader to read si is given by T(M, B). We assume that studies arrive
according to a known distribution.

The stochastic arrival of studies is assumed to follow a non-homogeneous Poisson
process, as established in the past for various medical arrival processes [34]. The parameters
of the arrival model were estimated via maximum likelihood estimation and provided to
us by the domain expert.

Readers. A reader rj ∈ R is represented by Subspeciality which is a list of all 〈M, B〉
pairs for which he is considered an expert. Note that every reader is qualified to read any
study; however, reading a study outside his expertise takes longer. Formally, if reader rj
does not possess the required sub-speciality for study si, the time needed for reading si
would be the nominal time given by T multiplied by a skill-efficiency factor ρ where ρ > 1.

Since readers expect to select the studies they wish to work on from their exposed list,
we model their preference as a utility function uj : S → R+. Due to the time constraints
and the high work load, it is reasonable to assume that readers follow a quantal response
decision-making [55]; specifically, the probability that reader rj will select study si from his
pool (Sj) is defined as

p(rj, si) =
euj(si)

∑sk∈Sj
euj(sk)

Eliciting the actual utilities of readers is extremely complex, therefore we follow the
revealed preference theory [56] and rely on historical data to model p(rj, si). From the data
which were made available to us by the institute, we extracted the set of studies to which
each reader was exposed and grouped them by 〈M, B〉. Then, the normalized frequency
of selected 〈M, B〉 by each reader was used as a proxy for that reader’s utility. This utility
proxy was then used within a quantal response model, as specified in Section 4.2.2.

Objective. As discussed above, each study si is associated with a soft deadline (D).
Medical institutions strive to minimize the tardiness of the studies. More specifically,
they seek to avoid overly tardy studies. For example, according to medical experts, it is
preferable to have two studies read one hour past their deadline than to have one study
read two hours past its deadline.

Formally, given the above characteristics, we define a time-based loss function
L({latenessi}) → R for all completed studies, where latenessi is defined as the differ-
ence between the time si was read and its deadline. Unlike tardiness, which can only take
positive values, lateness can be either negative (indicating that the study was read before
its deadline had passed) or positive (indicating that the study was read after its deadline).
The loss function L should obey the following criteria:

1. Additivity: L({latenessi}) = ∑i L(latenessi), giving equal weight to the loss contri-
bution of all studies.

2. Super-Linearity: L ∈ ω(lateness), i.e., ∀α ≥ 1.L(αl) ≥ αL(l) capturing the prefer-
ence described above, namely, L(1) + L(1) ≤ L(2).

3. Non-negativity: ∀l.L(l) ≥ 0 insuring that an early reading of a study does not
“compensate” for the loss incurred by the tardy reading of another study.

These criteria define a family of functions capturing the varying preferences of the
medical institutions.

Obeying the definitions above, and with the help of our domain expert, we define the
following loss function:
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L(si) = exp(2 · latenessi)

Since L is additive, the total loss is

L(S) = ∑
si∈S
L(si)

where latenessi is measured in hours.
The loss function is shown in Figure 3 for the range of [−2, 2] h around the deadline.

As shown in the figure, the loss encountered by studies read one hour or more after their
deadline is significantly higher then those read earlier.

Figure 3. Loss as a function of lateness.

Note that our approach provides stakeholders with the flexibility of specifying any
loss function of their choice, potentially even those which do not adhere to the three criteria
defined above.

The institute must choose, for each scan si, which readers rj will be exposed to si at
time t. Recall that in the ED domain, once a decision has been made, the outcome is deter-
ministic. In contrast, here, the (partial) autonomy of the readers introduces stochasticity
into the assignment process. Namely, for each decision, there are several possible outcomes
depending on the readers’ decisions since it is likely that most studies are exposed to more
than a single reader. This, in turn, makes standard solvers practically inapplicable. In
other words, even if the arrival time and characteristics of each si is known in advance, an
optimal offline policy is hard to derive. We tackle this challenge by utilizing the Monte
Carlo Tree Search (MCTS) [36] method and adapt it to our setting as discussed next.

Table 4 summarizes the key notations.

Table 4. Summary of key notations.

Notation Meaning

si ∈ S Studies
rj ∈ R Readers

latnessi Current time—si’s deadline
k Number of exposed studies per reader
ρ Skill-efficiency factor

p(rj, si) Probability that rj will select si from his pool
L Loss function
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4.2.4. Training the Ranking Function

To address the stochasticity in our setting, we propose to merge Steps 3–5 of our ap-
proach (Section 3), by utilizing the popular optimal policy approximation MCTS algorithm.
MCTS uses exploratory traversal of the search space using many simulations to approxi-
mate an optimal policy [36]. MCTS has proven itself capable of achieving state-of-the-art
performance in modeling both online dynamic behavior and the long-term effect of an
agent’s decisions in complex environments such as the games of Go and Chess [57]. To that
end, we first sample from a study arrival model a set of scenarios consisting of the study
arrivals, a set of readers and their associated probabilistic preferences.

Then, an MCTS algorithm is used to approximate the optimal ranking policy aimed at
minimizing L. Formally, when a new study si arrives, for each reader rj, we compare si to
his lowest ranking pending study, denoted s−j . If C(rj, si, rj, s−j ) ≥ 0.5, then si will replace

s−j and will be inserted in its correct order by using C as a partial-order operator on the
reader’s studies using the reader’s preference. Similarly, when the reading of a study si
is completed by reader rj, all studies which are not exposed to rj are ranked using C, and
the highest ranking study is added to rj’s list. This procedure is executed in parallel for all
available readers.

We use a deep-learning-based architecture to represent C. To enable learning and
generalization, each 〈study, reader〉 pair is represented by a unified feature vector as
outlined by the domain expert. The features, which we consider in modeling a reader at a
specific moment in time, are: his subspecialty, the percentage of studies which lay within
his subspecialty in his pool and the number of studies which passed their deadline in his
pool. The features we used in modeling studies are: the study’s lateness, the associated
subspecialty of the study, time left for reading the study and to how many readers the
study is exposed. Overall, each 〈study, reader〉 pair is represented by seven features.

We use the same architecture discussed in Section 4.1.5, which we demonstrated to
guarantee anti-symmetry (i.e., if si is strictly preferred to sk then sk is not strictly preferred
to si) and reflexivity (i.e., si is weakly preferred to si). The network architecture is depicted
in Figure 2.

4.2.5. Online Policy

The trained comparator C is used to update the readers’ exposure list at the arrival of
a new study and at the completion of reading.

Algorithm 2 summarizes the adaption of our approach (Section 3) to the medical
imaging setting.

Algorithm 2 Learning-Based Assignment with Exposure.

1: Create a set of studies to readers scenarios.
2: Apply MCTS in order to derive a policy from many simulations.
3: Translate each decision made by the MCTS into training instances.
4: Train a DNN comparator.
5: Use the resulting DNN as an online exposure policy.

As the number of simulations performed on Line 2 of Algorithm 2 is increased, the
resulting training samples cover a larger portion of the possible state-space, gradually
approximating the optimal exposure policy.

4.2.6. Experimental Results

The conventional exposure policy used by many medical institutions is to expose each
study to all readers and let the readers select the studies they wish to read. We refer to this
policy as the Naïve policy. As mentioned above, the Naïve policy suffers from two major
limitations: The first and most obvious is the readers’ information overload. Second, and
perhaps more surprising, is that the resulting lateness distribution of the studies is shown
to have a long tail, meaning that some studies are disproportionately late.
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The use of exposure policies has recently been proposed in medical institutions in
order to mitigate the above limitations. The rationale behind these exposure policies is to
expose urgent studies (or a given study which has become urgent) to a wider group of
readers. A commonly applied heuristic, denoted H, divides the time interval between the
arrival of a study and its deadline into three equal intervals: For the duration of the first
interval, the study is exposed to readers with the appropriate subspecialty. For the second
interval, the study is a wider group of readers (but not all of them). Finally, the study is
exposed to all readers until it is read.

Note that neither policy limits the number of exposed studies per reader (k) and thus
information overload may still pose a concern.

For training our DNN, we executed Algorithm 2 with the following parameters,
consistent with our real-world data:

• R consists of 10 readers. The reader’s sub-speciality list is sampled according to the
collected data. The reader’s processing time varies between 3 (if the study is within
the reader’s sub-speciality) and 9 (otherwise). The preference model for the reader is
set according to Section 4.2.3.

• S consists of 60 studies whose type, deadline and arrival time were sampled from the
study arrival model. A study’s deadline is in the range of 30 min to 1 week.

• k was set to 10, based on our discussion with a domain expert.

The exposure policy prescribed by the trained DNN, C, was evaluated next.
We evaluated our exposure policy in extensive simulations comparing our policy with

the two baseline policies, Naïve and H.
Using the same parameters that were used for training, our learning-based exposure

policy significantly outperforms the baseline policies in terms of the overall objective.
Specifically, our approach achieved an average score of 69 compared to 82 and 75.5 achieved
by H and Naïve, respectively (recall, the lower the better). The difference was found to
be statistically significant in the p < 0.05 range using a one-way ANOVA test followed
by pair-wise comparisons using paired-sampled t-tests with the Bonferroni correction.
Figure 4 and Table 5 present the lateness distribution under the three policies. The DNN
algorithm is the only one with no study read “extremely late” (i.e., more than 60 min past
its deadline).

Table 5. Lateness distribution for the three policies for 10 readers and k = 10.

Algorithm DNN H Naïve

Before the deadline 66.5% 74% 64%
Slightly after the deadline 3% 2.5% 8%
Late 25% 12.5% 21%
Very late 5.5% 9.5% 6.5%
Extremely late 0% 1.5% 0.5%

Note that H provides a significantly larger portion of studies read before the deadline
(74%) compared to the other approaches, p < 0.05, using the same statistical analysis as
before. However, at the same time, it further provides a significantly larger portion of
studies read very or extremely late, p < 0.05.
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Figure 4. Lateness distribution for the three algorithmic solutions. Error bars are too small to be
presented. Slightly over the deadline = less than 15 min after the deadline; Late = between 15 and
45 min past the deadline; Very late = between 45 and 60 min past the deadline; Extremely late = more
than 1 h past the deadline

We further evaluated the resulting reader’s pool size, k, during the experiments.
Following our proposed approach, k is constrained so as not to exceed 10, and in our
experiments it averages close to 10 studies exposed to each reader with minimal variability.
For the baseline models, the situation is different: the Naïve policy exposes an average of
25.5 studies per reader (s.d = 16) and H exposes 18 (s.d = 12). Namely, significantly larger
pool sizes were recorded for the baseline models which, in turn, are also characterized by
large variability. Note that high variability in the number of exposed studies may confuse
the readers.

To assess the ability of our approach to generalize and perform well under diverse
circumstances, we repeat the above experiment while varying the number of readers (|R|)
and their study pool size (k). We set the number of readers to either 5, 10 or 15 and k = 2, 5
or 10. Again, each setting was tested for 100 simulations. The results portray a similar image
to the one presented before—our learning-based exposure policy significantly outperforms
the baseline policies in terms of the overall objective. Specifically, our approach achieved an
average score of 68 compared to 98 and 78 achieved by H and Naïve, respectively (recall, the
lower the better). The difference is found to be statistically significant in the p < 0.05 range
using a one-way ANOVA test followed by pair-wise comparisons using paired-sampled
t-test with the Bonferroni correction. Table 6 presents the lateness distribution under the
three policies.

Table 6. Lateness distribution for the three policies.

Algorithm DNN H Naïve

Before the deadline 66.5% 74.5% 72%
Slightly after the deadline 3% 4% 4%
Late 25% 18% 21%
Very late 5.5% 0.5% 1.5%
Extremely late 0% 3% 1.5%

Note that H results in significantly more studies that are read prior to their dead-
line compared to the Naïve and DNN conditions. Nevertheless, this comes at a price—
significantly more studies are read very late, bringing about a poor overall score.

When comparing our approach’s performance under varying k values, we see that the
performance is improved for lower k values. Specifically, for k = 15, it achieves an average
score of 79.5, while, for k = 2, it achieves an average of 59 (k = 5 : 65, k = 10 : 69). This
result is not surprising since a lower k means less freedom for the readers and a higher level
of control for the system. Specifically, setting k = 1 means that we completely eliminate the



Sensors 2021, 21, 3021 18 of 21

readers’ autonomy. The fact that lateness is minimized when k is reduced is evidence of
the generalization ability of our approach to capture the system-wide objective while only
being trained with k = 10.

5. Discussion

The results from both domains indicate that the use of the LBA approach encompasses
significant benefits compared to the conventional medical assignment policies. Specifi-
cally, by leveraging real-world data and an explicitly defined complex objective, the LBA
approach can bring about a better suited policy to both domains.

By explicitly considering the domain-specific objectives and constraints (e.g., arrival
flow and available staff), LBA further allows stakeholders to experiment and investigate
different operation modes, work load, staff shortages, etc., which are at the core of medical
operations research and practice [43]. These may also include “softer” objectives (not
usually specified by medical metrics) such as the fairness of a medical professional’s
workload. Such an investigation could be accomplished by simply changing the modular
functions and constants in the above formulations and re-running the LBA process.

The ability to control and maintain the exposure list size, as shown in the evaluation
of our second setting, also enables our approach to strike a delicate balance between the
readers’ desire for autonomy in the selection of studies and the overall objective. Maintain-
ing small exposure list sizes is of great importance, as it is well known that large exposure
lists result in an increased user decision-making time [58] and lower user satisfaction [59].

However, when presenting a new approach, such as LBA, it is worth discussing its
limitations. First, the results demonstrate an interesting trade-off between performance
and development time. While LBA allows for better performance, arriving at the LBA
policy requires the construction of the instances, solving them and training a supervised
learning model, which in turn takes significantly more time compared to the easy-to-
deploy heuristic commonly applied today. It is important to note that the LBA training
is performed offline; thus, in deployment of the resulting policy, no run-time differences
are encountered. Second, deploying an automated policy, such as the one proposed in this
study, may encounter deployment challenges or even resistance from the medical staff. We
are currently working with the largest hospital in Israel to deploy our approach in their
ED. We are also looking into the possibility of collaborating with an industrial partner
in order to evaluate the medical imaging exposure policy in a hospital. Third, to deploy
our approach, access to real-world data or statistical models are needed. If such data
are not available, transfer learning [60] of datasets from similar domains may be applied.
Fortunately, the abundance of data and their collection by medical institutions, which is
a common practice today, mitigate this concern. Finally, our approach relies on explicit
features for representing the decision points used by the supervised machine learning
model. Since the two settings explored in this study could be easily represented using
a limited number of features, the neural network was able to successfully capture their
relevant dependencies. In more complex settings where the number of raw features is
particularly large, automatic feature extraction methods (e.g., [61]) could be used and will
be explored in future work.

6. Conclusions

This article introduces and extensively evaluates a novel decision support algorithm
for assigning patients to medical professionals termed Learning-Based Assignment (LBA).
LBA combines both machine learning and optimization techniques in order to learn an
efficient online policy. We demonstrate the benefits of the LBA approach in two medical
domains and show that it outperforms existing practices.

We plan to extend this work in three main directions: First, since many hospitals
also operate as training centers, there may also be an added value for assigning multiple
physicians of different seniority to treat the same patient in an ED setting. Therefore, we
plan to extend our model to incorporate these complex allocation objectives. Second, we
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plan to apply our approach to additional domains such as recommending tasks to workers
in crowd-sourcing platforms (e.g., Amazon Mechanical Turk (https://www.mturk.com/,
accessed on 25 April 2021). Effective, online policies play a critical role in such web-based
systems and may benefit both the system’s owner by maximizing productivity and the
workers themselves by enhancing their experience with a small set of highly matching
task options. In the analogy to this article’s setting, tasks (in our setting, studies) arrive
stochastically to the crowd-sourcing platform (shared pool); workers (readers) display
different preferences over the tasks; and there is some benefit/loss associated with different
workers performing different tasks at different times.

In addition, as mentioned above, we are currently working with the largest hospital
in Israel to deploy our approach in their ED. We are also looking into the possibility of
collaborating with an industrial partner in order to evaluate the medical imaging exposure
policy in a hospital.

We hope that this study will encourage other researchers to tackle the important and
challenging task of promoting quality and timely medical care.
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